Chapter 8

CHOICE OF TIME-MARCHING
METHODS

8.1 Stiffness Definition for ODE’s

8.1.1 Relation to \-Eigenvalues

The introduction of the concept referred to as “stiffness” comes about from the nu-
merical analysis of mathematical models constructed to simulate dynamic phenom-
ena containing widely different time scales. Definitions given in the literature are
not unique, but fortunately we now have the background material to construct a
definition which is entirely sufficient for our purposes.

We start with the assumption that our CFD problem is modeled with sufficient
accuracy by a coupled set of ODE’s producing an A matrix typified by Eq. 7.1.
Any definition of stiffness requires a coupled system with at least two eigenvalues,
and the decision to use some numerical time-marching or iterative method to solve
it. The difference between the dynamic scales in physical space is represented by
the difference in the magnitude of the eigenvalues in eigenspace. In the following
discussion we concentrate on the transient part of the solution. The forcing function
may also be time varying in which case it would also have a time scale. However,
we assume that this scale would be adequately resolved by the chosen time-marching
method, and. since this part of the ODE has no effect on the numerical stability of
the homogeneous part, we exclude the forcing function from further discussion in this
section.

Consider now the form of the exact solution of a system of ODE’s with a com-
plete eigensystem. This is given by Eq. 6.24 and its solution using a one-root. time-
marching method is represented by Eq. 6.25. For a given time step, the time integra-
tion is an approximation in eigenspace that is different for every eigenvector 7,,. In
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many numerical applications the eigenvectors associated with the small |A,,| are well
resolved and those associated with the large |\, | are resolved much less accurately,
if at all. The situation is represented in the complex Ah plane in Fig. 8.1. In this
figure the time step has been chosen so that time accuracy is given to the eigenvectors
associated with the eigenvalues lying in the small circle and stability without time
accuracy is given to those associated with the eigenvalues lying outside of the small
circle but still inside the large circle.
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Figure 8.1: Stable and accurate regions for the explicit Euler method.

The whole concept of stiffness in CFD arises from the fact that we often do
not need the time resolution of eigenvectors associated with the large |\, | in
the transient solution, although these eigenvectors must remain coupled into

the system to maintain a high accuracy of the spatial resolution.

8.1.2 Driving and Parasitic Eigenvalues

For the above reason it is convenient to subdivide the transient solution into two
parts. First we order the eigenvalues by their magnitudes, thus

Ml < el < - < P (8.1)
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Then we write

. -1 M
Transient pz: ¢ mt Do Z o mt T (8.2)
M - m m m m .
Solution =~ =
Driving Parasitic

This concept is crucial to our discussion. Rephrased. it states that we can sep-
arate our eigenvalue spectrum into two groups; one [Ay — A,_1] called the driving
eigenvalues (our choice of a time-step and marching method must accurately approx-
imate the time variation of the eigenvectors associated with these), and the other,
[\, — Au], called the parasitic eigenvalues (no time accuracy whatsoever is required
for the eigenvectors associated with these. but their presence must not contaminate
the accuracy of the complete solution). Unfortunately, we find that, although time
accuracy requirements are dictated by the driving eigenvalues, numerical stability
requirements are dictated by the parasitic ones.

8.1.3 Stiffness Classifications

The following definitions are somewhat useful. An inherently stable set of ODE’s is
stiff if
Apl < |An]
In particular we define the ratio
Cr = Aarl /|A]
and form the categories
Mildly-stiff C, <102
Strongly-stiff 10°< C, <10°
Extremely-stif — 10° < €, < 108
Pathelogically-stiff 10 < C,

It should be mentioned that the gaps in the stiff category definitions are intentional
because the bounds are arbitrary. It is important to notice that these definitions
make no distinction between real, complex, and imaginary eigenvalues.

8.2 Relation of Stiffness to Space Mesh Size

Many flow fields are characterized by a few regions having high spatial gradients of the
dependent variables and other domains having relatively low gradient phenomena. As
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a result it is quite common to cluster mesh points in certain regions of space and spread
them out otherwise. Examples of where this clustering might occur are at a shock
wave, near an airfoil leading or trailing edge, and in a boundary layer. Very often
the adaptation of the mesh to the geometry and physics of the problem is carried out
by introducing a generalized coordinate system which transforms a highly distorted
adaptive grid in physical space to a uniform, equispaced grid in the computational
domain.

One quickly finds that the details of the procedure just discussed strongly affect the
eigensystem of the resulting A matrix. In order to demonstrate this, let us examine
the eigensystems of the model problems given in Section 4.4.2. The simplest example
to discuss relates to the model diffusion equation. In this case the eigenvalues are
all real, negative numbers that automatically obey the ordering given in Eq. 8.1.
Consider the case when all of the eigenvalues are parasitic (i.e., we are interested only
in the converged steady-state solution) so that A\, = A;. A simple calculation shows

that
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The most important information found from this example is the fact that the
stiffness of the transient solution is directly related to the resolution (i.e., the mesh
spacing) of the space solution. Furthermore, in diffusion problems this stiffness is
proportional to the reciprocal of the space mesh size squared. For a mesh size M = 40,
this ratio is about 680. Even for a mesh of this moderate size the problem is already
approaching the category of strongly stiff.

For the biconvection model a similar analysis shows that

1
A M|~ —
Al /1] % 5=

Here the stiffness parameter is still space-mesh dependent, but much less so than for
diffusion-dominated problems.

We see that in both cases we are faced with the rather annoying fact that the more
we try to increase the resolution of our spatial gradients. the stiffer our equations tend
to become. Typical CFD problems without chemistry vary between the mildly and
strongly stiff categories, and are greatly affected by the resolution of a boundary layer
since it is a diffusion process. Our brief analysis has been limited to equispaced
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problems. but in general the stiffness of CFD problems is proportional to the mesh
intervals in the manner shown above where the critical interval is the smallest one in
the physical domain.

8.3 Practical Considerations for Comparing Meth-

ods

We have presented relatively simple and reliable measures of stability and both the
local and global accuracy of time-marching methods. Since there are an endless
number of these methods to choose from, one can wonder how this information is
to be used to pick a “best” choice for a particular problem. There is no unique
answer to such a question. For example, it is, among other things, highly dependent
upon the speed, capacity, and architecture of the available computer, and technology
influencing this is undergoing rapid and dramatic changes as this is being written.
Nevertheless. if certain ground rules are agreed upon, relevant conclusions can be
reached. Let us now examine some ground rules that might be appropriate. It should
then be clear how the analysis can be extended to other cases.

8.3.1 Events

Let us consider the problem of measuring the efficiency of a time—marching method
for computing, over a fixed interval of time. an accurate transient solution of a coupled
set of ODE’s. The length of the time interval, T, and the accuracy required of the
solution are dictated by the physics of the particular problem envolved. For example,
in calculating the amount of turbulence in a homogeneous flow. the time interval
would be that required to extract a reliable statistical sample, and the accuracy
would be related to how much the energy of certain harmonics would be permitted
to distort from a given level. Such a computation we refer to as an event.

The appropriate error measures to be used in comparing methods for calculating
an event are the global ones, Ery and Er,, discussed in Section 6.5.5, rather than the
local ones ery and er; discussed earlier.

8.3.2 Derivative Evaluations

The actual form of the coupled ODE’s that are produced by the semi-discrete ap-
proach is
du - -
— = F(u,t
ar = Flwd)
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At every time step we must evaluate the function F(J t) at least once. This function
is usually nonlinear, and its computation usually consumes the major portion of the
computer time required to make the simulation. We refer to a single calculation of the
vector F(th) as an evaluation and denote it by F,,.

8.4 Comparing the Efficiency of Explicit Methods

8.4.1 Imposed Constraints

As mentioned above, the efficiency of methods can be compared only if one accepts a
set of limiting constraints within which the comparisons are carried out. The follow
assumptions bound the considerations made in this Section:

1. The time-march method is explicit.

2. Computer storage capacity and access time are of negligable importance. (At
one time this was a severe limitation. but computer technology has progressed
to the point where it is, in many cases, no longer of major importance).

3. The calculation is to be time-accurate, must simulate an entire event which
takes a total time 7', and must use a constant time step size, h, so that

T =Nh

where N is the total number of time steps.

8.4.2 An Example Involving Diffusion

Let the event be the calculation of u(¢) = u(0) e from ¢ = 0 to ¢t = T where
T = —1In(0.25). This makes the exact value of u at the end of the event equal to
0.25, i.e. u(T) = 0.25. To the constraints imposed above, let us set the additional
requirement

e The error in u at the end of the event, i.e., the global error, must be < 0.5%.

We judge the most efficient method as the one that satisfies these conditions and
has the fewest number of evaluations, F.,. Three methods are compared — explicit
Euler, AB2. and RKA4.

First of all, the allowable error constraint means that the global error in the
amplitude, see Eq. 6.40. must have the property:

ET,\

7| <005
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Then, since h = T/N = —1In(0.25)/N, it follows that
|1 = (o4(In(.25)/N)) /.25 < .005

where oy is found from the characteristic polynomials given in Table 7.1. The results
shown in Table 8.1 were computed using a simple iterative procedure.

Method N h o1 F., Er,
Euler 193 .00718 .99282 193 .001248 worst
AB2 16 .0866  .9172 16 .001137
RK4 2 6931  .5012 8 .001195 best

Table 8.1: Comparison of time-marching methods for a simple dissipation problem.

In this example we see that, for a given global accuracy, the method with the
highest local accuracy is the most efficient on the basis of the expense in evaluating
F.,. Thus the second-order Adams-Bashforth method is much better than the first-
order Euler method, and the fourth-order Runge-Kutta method is the best of all. The
main purpose of this exercise is to show the (usually) great superiority of 2nd-order
over lst-order time-marching methods.

8.4.3 An Example Involving Periodic Convection

Let us use as a basis for this example the study of homogeneous turbulence simulated
by the numerical solution of the incompressible Navier-Stokes equations inside a cube
with periodic boundary conditions on all sides. In this numerical experiment F,,
contributes overwhelmingly to the CPU time and the number of these evaluations
must be kept to an absolute minimum because of the magnitude of the problem. On
the other hand, a complete event must be established in order to obtain meaningful
statistical samples which are the essence of the solution. In this case, in addition to
the constraints given in Section 8.4.1, we add the following:

e The number of evaluations of F(ﬁ t) is fixed.

Under these conditions a method is judged as best when it has the highest global
accuracy for resolving eigenvectors with imaginary eigenvalues. The above constraint
has led to the invention of schemes that omit the evaluation of ﬁ(ﬁt) in the cor-
rector step of a predictor-corrector combination, leading to the so-called incomplete
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predictor-corrector methods. The presumption is, of course, that more efficient meth-
ods will result from the omission of the second evaluation of F.,. An example is the
method of Gazdag, given in Section 6.7. Basically this is composed of an AB2 predic-
tor and a trapezoidal corrector. However, the derivative of the fundamental family is
never found so there is only one evaluation required to complete each cycle. The A-o
relation for the method is shown as entry 10 in Table 7.1.

In order to discuss our comparisions we introduce the following definitions:

e Let a k-evaluation method be defined as one that requires k evaluations. F,. of

—

F(i.t) to advance an event one of that methods time intervals, h.
o Let K represent the total number of allowable F.,.

e Let hy be the time interval advanced in one step of a one-evaluation method.

The Gazdag, leapfrog. and AB2 schemes are all 1-evaluation methods. The second
and fourth order RK methods are 2- and 4-evaluation methods, respectively. For a 1-
evaluation method the total number of time steps, NV, and the number of evaluations,
K, are the same, one evaluation being used for each step. so that for these methods
h = hy. For a 2-evaluation method N = K/2 since two evaluations are used for
each step. However, in this case, in order to arrive at the same time T after K
evaluations, the time step must be twice that of a one-evaluation method so h = 2h;.
For a 4-evaluation method the time interval must be A = 4h;, etc. Notice that
as k increases, the time span required for one application of the method increases.
However, notice also that as k increases, the power to which oy is raised to arrive
at the final destination decreases, see the Figure below. This is the key to the true
comparison of time-march methods for this type of problem.

0 T un
k=1 | ° ° ° ° ° ° ° | [J()\hl)]S
k=2 | 2k e . . | [o(2A)]
k=4 | 4hy | [o(4n))’

Step sizes and powers of o for k-evaluation methods used to get to the same value
of T if 8 evaluations are allowed.

In general. after K evaluations, the global amplitude and phase error for k-
evaluation methods applied to systems with pure imaginary A-roots can be written?

Amplitude = 1 — |oy(kwhy)[*/* (8.3)
1See Egs. 6.38 and 6.39.
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K

Er, = wl ——tan™’ l (8.4)

oi(kwh)
Jr(kwhl)]

Consider a convection-dominated event for which the computation of F,, is very
time consuming. We idealize to the case where A\ = 1w and set w equal to one. The
event must proceed to the time t = T = 10. We consider two maximum evaluation
limits K = 50 and K = 100 and choose from four possible methods, leapfrog, AB2,
Gazdag, and RK4. The first three of these are one-evaluation methods and the last
one is a four-evaluation method. It is not difficult to show that on the basis of local
error (made in a single step) the Gazdag method is superior to the RK4 method in
both amplitude and phase. For example, for wh = 0.2 the Gazdag method produces
a |o1| = 0.9992276 whereas for wh = 0.8 (which must be used to keep the number of
evaluations the same) the RK4 method produces a |o1| = 0.998324. However, we are
making our comparisons on the basis of global error for a fixed number of evaluations.

First of all we see that for a one-evaluation method hy = T'/K. Using this, and the
fact that w = 1, we find, by some rather simple calculations? made using Eqs. 8.3 and
8.4, the results shown in Table 8.2. Notice that to find global error the Gazdag root
must be raised to the power of 50 while the RK4 root is raised only to the power of
50/4. On the basis of global error the Gazdag method is not superior to RK4 in either
amplitude or phase, although, in terms of phase error (for which it was designed) it
is superior to the other two methods shown.

K leapfrog AB2 Gazdag RK4
why = .1 100 1.0 1.003  .995 .999
why =.2 50 1.0 1.022  .962 979
a. Amplitude, exact = 1.0.

K leapfrog AB2 Gazdag RK4
why=.1 100 —.96 —24 A5 12
why =.2 50 -38 —-938 1.5 1.5

b. Phase error in degrees.

Table 8.2: Comparison of global amplitude and phase errors for four methods.

2The oy root for the Gazdag method can be found using a numerical root finding routine to trace
the three roots in the o-plane, see Fig. 7.3e.
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Using analysis such as this (and also considering the stability boundaries) the RK4
method was chosen to compute the homogeneous turbulence simulations for events
requiring over 40 hours of supercomputer time to establish statistically acceptable
events. The RK4 method is highly recommended as a basic first choice for any
explicit time-accurate calculation.

8.5 Coping With Stiffness

8.5.1 Explicit Methods

The ability of a numerical method to cope with stiffness can be illustrated quite nicely
in the complex Ak plane. A good example of the concept is produced by studying
the Euler method applied to the representative equation. The transient solution is
u, = (1 + Ah)" and the trace of the complex value of Ah which makes |1 + Ah| =1
gives the whole story. In this case the trace forms a circle of unit radius centered at
(—1.0) as shown in Fig. 8.1. If h is chosen so that all Ak in the ODE eigensystem
fall inside this circle the integration will be numerically stable. Also shown by the
small circle centered at the origin is the region of Taylor series accuracy. If some Ak
fall outside the small circle but stay within the stable region, these Ah are stiff, but
stable. We have defined these Ah as parasitic eigenvalues. Stability boundaries for
some explicit methods are shown in Figs. 7.5 and 7.6.

For a specific example, consider the mildly stiff system composed of a coupled
two-equation set having the two eigenvalues Ay = —1 and Ay = —100. If uncoupled
and evaluated in wave space, the time histories of the two solutions would appear as a
rapidly decaying function in one case. and a relatively slowly decaying function in the
other. Analytical evaluation of the time histories poses no problem since e71%% quickly
becomes very small and can be neglected in the expressions when time becomes large.
Numerical evaluation is altogether different. Numerical solutions, of course, depend
upon [o(A,h)]" and no |o,,| can exceed one for any A, in the coupled system or else
the process is numerically unstable. Let us choose the simple explicit Euler method
for the time march. The coupled equations in real space are represented by

ul(n) = Cl(l — 100h)nl’11 + CQ(l — h)nl’lz + (PS)l
UQ(TL) = Cl(l — 100h)n$21 + CQ(l — h)nLEQQ + (PS)Q (85)

In order to resolve the term associated with e~ ((1 — 100k)"), h would have to be
chosen such that A < 0.001. The term associated with e™* ((I1 — h)")would then be
resolved exceedingly well, and no numerical problem occurs. However, after n = 70
steps with A = 0.001, (1—100-0.001)™ =~ 0.0006, and the effect of that term has, for
many practical applications, disappeared. At this stage, (1 —0.001)™ = 0.932 which
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is not much different from its starting value of 1. To drive the (1 — k)" term to zero
(i.e. = 0.0006), we would like to change the step size to about h = 0.1 and continue
70 more steps. We would then have a well resolved answer to the problem throughout
the entire time interval. However, this is not possible because of the coupled presence
of (1 — 100k)™, which in just 10 steps at A = 0.1 amplifies those terms by & 107,
far outwieghing the initial decrease obtained with the smaller time step. In fact,
h = 0.02 is the maximum step size that can be taken in order to maintain stability
and tt that rate about 350 time steps would have to be computed in order to drive

e~ to ~ 0.0006.

8.5.2 Implicit Methods

Now let us re-examine the problem that produced Eq. 8.5 but this time using an
unconditionally stable implicit method for the time march. We choose the trapezoidal
method. Its behavior in the Ak plane is shown in Fig. 7.4b. Since this is also a one-
root method, we simply replace the Euler o with the trapezoidal one and analyze the
result. It follows that the final numerical solution to the ODE is now represented in
real space by

1 —50R\" 1 —.50\"
ui(n) = Cl( ) «1711-|-62< ) z12 + (PS)

1+ 50h 14 .5k
1 —500\" 1—5h\"
u2(n) = Cl(l—|—50h> $21+62<1—|—_5h) $22+(PS)2 (86)

~100% we need to use a step size

In order to resolve the initial transient of the term e
of about & = 0.001 for about 70 steps. This is the same step size used in applying
the explicit Euler method because here accuracy is the only consideration and a very
small step size must be chosen to get the desired resolution. (It is true that for the
same accuracy we could in this case use a larger step size because this is a 2'nd-order
method, but that is not the point of this exercise). However, now with the implicit
method we can proceed to calculate the remaining part of the event using our desired
step size h = 0.1 without any problem of instability. In both intervals the desired
solution would be 2'nd-order accurate and well resolved. It is true that in the final
70 steps one o-root is [1 — 50(0.1)]/[1 + 50(0.1)] = 0.666 - - - and this has no physical
meaning whatsoever. However, its influence on the coupled solution is negligable at
the end of the first 70 steps,and, since (0.666 ---)"* < 1, its influence in the remaining
70 steps is even less. Actually. although this root is one of the principal roots in the
system, its behavior for ¢ > 0.07 is identical to that of a stable spurious root.
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8.5.3 A Perspective

It is important to retain a proper perspective on a problem represented by the above
example. It is clear that an unconditionally stable method can always be called upon
to solve stiff problems with a minimum number of time steps. In the example, the
conditionally stable Euler method required about 420 time steps, as compared to
about 140 for the trapezoidal method, about three times as many. However, the
Euler method is extremely easy to program and requires very little arithmetic per
step. For preliminary investigations it is often the best method to use for mildly-stiff
problems. and for refined investigations of such problems the fourth-order Runge-
Kutta method is recommended. Both of these can be considered as effective mildly
stiff-stable methods.

There 1s yet another technique for coping with certain stiff systems in fluid dy-
namic applications. This is known as the multigrid method. It has enjoyed a remark-
able success in many practical problems, however, we need an introduction to the
theory of relaxation before it can be presented.



